Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerev…

A new interesting article has been published in Appl Microbiol Biotechnol. 2019 May 28. doi: 10.1007/s00253-019-09906-9. and titled:

Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerev…

Authors of this article are:

Liu ZL, Huang X, Zhou Q, Xu J.

A summary of the article is shown below:

Inhibitory compounds liberated from lignocellulose pretreatment are representative toxic chemicals that repress microbial growth and metabolism. A tolerant strain of the industrial yeast Saccharomyces cerevisiae is able to detoxify a major class of toxic compounds while producing ethanol. Knowledge on the yeast tolerance was mostly obtained by gene expression analysis and limited protein expression evidence is yet available underlying the yeast adaptation. Here we report a comparative protein expression profiling study on Y-50049, a tolerant strain compared with its parental industrial type strain Y-12632. We found a distinctive protein expression of glucose-6-phosphate dehydrogenase (Zwf1) in Y-50049 but not in Y-12632, in the relatively conserved glycolysis and pentose phosphate pathway (PPP) in response to a combinational challenge of 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF). A group of proteins with aldehyde reduction activity was uniquely induced expressed in Y-50049 but not in Y-12632. Such evidence allowed fine-tuning a mechanism of the renovated in situ detoxification by Y-50049. As the key protein, Zwf1 drove the glucose metabolism in favor of the oxidative branch of the PPP facilitating in situ detoxification of the toxic chemicals by Y-50049. The activated expression of Zwf1 generated the essential cofactor nicotinamide adenine dinucleotide phosphate (NADPH) enabling reduction of furfural and HMF through a group of aldehyde reduction enzymes. In return, the activate aldehyde reductions released desirable feedbacks of NADP+ stimulating continued oxidative activity of Zwf1. Thus, a well-maintained cofactor regeneration cycle was established to restore the cofactor imbalance caused by furfural-HMF. Challenges and perspectives on adaptation of significantly differential expressions of ribosomal proteins and other unique proteins are also discussed.

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as: Adaptation; In situ detoxification; Industrial yeast; Protein expression; Stress tolerance.