Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification.

A new interesting article has been published in PLoS Comput Biol. 2019 May 30;15(5):e1007067. doi: 10.1371/journal.pcbi.1007067. and titled:

Simulation of single-protein nanopore sensing shows feasibility for whole-proteome identification.

Authors of this article are:

Ohayon S, Girsault A, Nasser M, Shen-Orr S, Meller A.

A summary of the article is shown below:

Single-molecule techniques for protein sequencing are making headway towards single-cell proteomics and are projected to propel our understanding of cellular biology and disease. Yet, single cell proteomics presents a substantial unmet challenge due to the unavailability of protein amplification techniques, and the vast dynamic-range of protein expression in cells. Here, we describe and computationally investigate the feasibility of a novel approach for single-protein identification using tri-color fluorescence and plasmonic-nanopore devices. Comprehensive computer simulations of denatured protein translocation processes through the nanopores show that the tri-color fluorescence time-traces retain sufficient information to permit pattern-recognition algorithms to correctly identify the vast majority of proteins in the human proteome. Importantly, even when taking into account realistic experimental conditions, which restrict the spatial and temporal resolutions as well as the labeling efficiency, and add substantial noise, a deep-learning protein classifier achieves 97% whole-proteome accuracies. Applying our approach for protein datasets of clinical relevancy, such as the plasma proteome or cytokine panels, we obtain ~98% correct protein identification. This study suggests the feasibility of a method for accurate and high-throughput protein identification, which is highly versatile and applicable.

Check out the article’s website on Pubmed for more information:



This article is a good source of information and a good way to become familiar with topics such as: n/a.